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Abstract 

We present a simple model for primordial inflation in the context of 
SU(N,l) nwscale n = 1 supergravity. Because the model at zero temperature 
very closely resembles global supersymmetry, 
constants do not exist, 

minima with negative cosmological 
and it is easy to have a long inflationary epoch while 

keeping density perturbations of the right magnitude and satisfying other 
cosmological constraints. We pay specific attention to satisfying the thermal 
constraint for inflation, i.e. the existence of a high temperature minimum at 
the origin. 
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Recently, there has been much interest in inflationary models in the 

context of supergravity theories. 11-11) All of these models are examples of 

primordial inflationl*) or chaotic inflation4) Involving SU(5) singlet scalar 

fields. Models involving just a single scalar field for inflation, the 

inflaton, are in principle the simplest. The couplings of the inflaton are 

then determined by the necessary requirements for inflation. 13) It was 

noticed, 5) however, that models involving a single scalar field in super- 

gravity theories utilizing minimal kinetic terms could not simultaneously 

satisfy the inflationary constraints and the thermal constraint3) which 

requires a high temperature minimum at a point where the zero-temperature 

potential is flat. In this letter, we will show that they can both be 

satisfied in models involving non-minimal kinetic terms, in particular the no- 

scale models of supergravity."+)-17) 

We begin by reviewing the problem in supergravity models with minimal 

kinetic terms. These are models in which the Kahler potential is expressed as 

G = 4; $ + In (F(* 

so that the scalar kinetic terms are 

i . 

%.T. = - G: (au+) (a’+:) = - 6 (au+‘) (a’,$;) 
j 

where we have defined Gi 5 aG/a$ia$T and F(#) is the superpotential. 

scalar potential is given in terms of G by181 

V = eG[Gi(G-i)! Gj -31 
I 

(1) 

(2) 

The 

(3) 
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which for G as in eq. (1) yields the familiar result, 

V = ex~($%;)[@F + Fi12 - 31F(21 (4) 

where Fi E aF/a$. 

The breaking of supergravity was most simply accomplished by the 

inclusion of a term in F such as 19) 

~'(2 + A) (5) 

where we will refer to z as the Polonyi field. The scale p was chosen so as 

to arrange the gauge hierarchy 

% - P*/M (6) 

where M = Mp/fi is the normalized Planck mass. Henceforth we will work in 

units such that M = 1. The Polonyi term is the source of various cosmological 

problems which we will only comment on below. In order to preserve the gauge 

hierarchy, one can not assocciate the Polonyi field with the inflaton. This 

would require11 u - 101'+ GeV as opposed to p - 1010 GeV as given by (6). 

Because of the large scale for the inflaton, it has been customary to 

separate the Polonyi, inflaton, and observable sectors of the theory so that 

F = F(z) + F(4) + F(yi) (7) 

where z is the Polonyi field, $ is the inflaton and yi are all other matter 

and higgs fields. Because we did not want the supersymmetry breaking scale to 

be influenced by the inflaton, we had the requirementl) 
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eG12 G4 = $* F + F = 0 4 

at the minimum <$> = v h O(1) after inflation. In order to satisfy (8) and 

ensure a vanishing cosmological constant at <$> = v we found 1) 

F(v) = F&v) = 0 (9) 

The requirements for inflation 13) set other general constraints on 

F(4). For example, it is clear that at 4 = 0 we must have V(0) > 0. This 

implies that 

Fb (0) # 0. (10) 

A second requirement is that at the origin, the potential must be flat, i.e. 

V4(0) = 0 or 

emG v4 = Go (GIG i -3) + G 
i4 

Gi + G = 0 
4 (11) 

at PO. We will now see that these two conditions alone are enough to show 

that a finite temperature minimum is not possible at the origin. 

For the case of minimal kinetic terms and in the limit that there are a 

large number of supermultiplets N of matter fields yi, the finite temperature 

corrections to (3) can be written as 8),9) 

VT = (l/12) NT* .G [G,ci - 21 (12) 

A finite temperture minimum at +I = 0 will require at least that (VT)+ = 0 or 

12N-lT-*e-+I ) =G(G$-2)+G Gi+G =0 
T4 4% 14 4 (13) 
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It is clear that the only way to satisfy both (11) and (13) is for G = 0 at + 
4 

= 0. This implies however that F+(O) = 0 and hence violates the condition 

(10). The above proof applies only to the large N limit with minimal kinetic 

terms. The general conditions in which a finite temperature minimum at the 

origin and a flat potential can exist simultaneously has been examined. 20) I" 

what follows we will look at, in detail, one specific case in which these two 

conditions are satisfied, i.e. SU(N,l) no-scale supergravity. 

Supergravity models based on a non-compact SU(N,I)/SLJ(N)xU(l) [or SU(1.1) 

/U(l)] ghler manifold have attracted interest14'15.16r17) because they have a 

flat potential at the tree level. Therefore the minimum of the potential, and 

hence the scale of supersymmetry breaking, is fixed by radiative corrections. 

This enables one to determine dynamically the weak interation scale as well as 

the supersymmetry breaking scale. Thus these "no-scale" models offer a solu- 

tion to the hierarchy problem. It is also of interest to note that n > 4 

extended supergravity theories contain analogous non-compact group structures: 

SU(l,l)/U(l) in the case of n = 4, SU(5,1)/SU(5)xU(l) in the case of n = 5, 

etc. Therefore, these models are natural examples of models with non-minimal 

kinetic terms where one might look for a solution to our inflationary diffi- 

culties. 

Let us now assume the following form for the Kghler potential 151.16) 

G = -3 In (f(z,z*) - + - y;yi) + In lFl2 (14) 

where we will assume second, third, and fourth derivatives of f(z,z*) vanish 

at the physical minimum z=z o and (f,l = constant. 16) We assume that $ and y 

are decoupled in the superpotential, as in eq. (7). For the purposes of this 

discussion we will neglect entirely the matter fields yi. The kinetic terms 
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that one drives from eq. (2) are not well normalized for the fields z and $. 

The correctly normalized fields are related to them by the following non- 

analytic transformations,14)~15) 

CR = &E, CI = .(1’3) C-Jm (2 - z*) 

(15) 

where we have defined i = G - lnlFl2. Assuming fzz* = 0, the scalar potential 

derived from eq. (14) using eq. (3) is 

’ = e(2’3) ’ IF412 = eclFe,2 (16) 

This closely resembles the scalar potential for global supersymmetry. We note 

that in the domain of interest for inflation, z h O(1) while I+/ << 1 so that 

the $ dependence in G is negligible. 

It is worthwhile at this point to make an important observation. A major 

problem with the original models of inflation with supergravity 1)-3) was that 

with the scalar potential described by (4) it was possible to show 5, that when 

the thermal constraint was satisfied, the susy-preserving minimum closest to 

the origin was always separated by another minimum with negative vacuum energy 

density. It is now clear that such a disaster is not a general feature in 

supergravity models, since the form of the scalar potential in eq. (16) is 

positive semidefinite. 

It remains now to show that F($) can be chosen so the V($,$*) will lead 

to inflation with the correct density perturbation and that the thermal 

constraints can be satisfied. We will make the illustrative choice 16) in what 

follows that eG = 1. 
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We begin by exprerssing F(4) as a polynominal 1) 

x 
F(4) = [X + Z-$ $*+'I m; (17) 

so that F+ has the simple form 

F4 = rni EX,+* (18) 

We can assume without loss of generality that the global minimum (or the local 

minimum closest to the origin) occurs at <$>=l. Then, in order not to add a 

contribution to the cosmological constant, we require F 4 (1) = 0 or 

E&=0 (19) 

(Because of the non-minimal nature of G (eq. 14) we no longer have to require 

F(1) = 0). The condition for flatness at the origin V+ (0) = 0 combined with 

V(O) > 0 leads to X1 = 0. In addition, a massless inflaton at the origin will 

lead to the greatest amount of inflation hence we take A2 = 0. The simplest 

superpotential with inflationary capabilities will then involve only X0 and A 
3 

= - x0 or 

F(4) = mi [$ - (l/4) +41 (20) 

where we have now absorbed X0 into m . 
0 This simple form for F has properties 

very similar to the model discussed in ref. 6. It differs however, as we will 

soon see, in allowing for a high temperature minimum at the origin. 
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The remaining paratemter in F(4), no, is to be determined by the 

magnitude of density perturbations. 21) From (16) and (20) we see that the 

scalar potential is 

V = rnz I1 - ($3 + $*3) + (+Q*)31 (21) 

For a potential of the form (21), the density perturbations can be written 

as22) 

&P 1 2m4, 
_=- (- H ) ln2 (Hk-') 

P 
(2*31”~ 

(27.) 

where H is the Hubble parameter 

Hz = (l/3) m; 
(23) 

and k is the wave number of the perturbation. From the condition that tie, 
P 

10T4 we find that m 0 - 10-4. If we had chosen eG < 1, no would have been 

correspondingly larger. The inflationary timescale in this model is just 

H(At)I = 3H2/V$+(H) = H/4mz - mi2 >> 65. 0.4) 

Thus there is ample inflaton, with our choice of mo. We will return later to 

reheating after inflation in this model. We only comment here that the decay 

rate for the inflation r - M3 6 4 
- rni leads to a reheat temperature TR - rni and 

the possibility of a maximum baryon-to-photon ratio, 
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NB TR 
N ----z-10-4 E 

Y 4 
(25) 

where E is the magnitude of CP violation during the production of AB. 

We turn now to the temperature corrections for the theory desribed by 

(14) and (19). Because of the form of G (i.e. Gi # 65) 
1 it is no longer 

possible to use the approximation *)pg) which led to (12). Instead, we must 

use the full form for the temperature corrections of O(T*) given in ref. 8: 

v T = (l/24) Tr (M$ + l/2 M2F) T2 (26) 

where 

Tr M; = 2V; 

(l/2) Tr M$ = eGIITijl *1 - 2eG (27) 

+j = & + &j - Gk(G-‘)i Gi; 

We note here that these equations can only be used for the fields z, $, and y 

and not 5, 0, and Y. 

For the ghler potential, (14), we can simplify (2.7) so that 15) 

+j _ F*y + G @cj + e + $F*i 1 

F F* F* 
U-8) 
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Thus, we arrive at the full temperature dependent potential* 

T2 E VT =xe { (361fZ(" ++ (44*)* + 8(fZ12 $+* -2) IFI 

+ (201 fzj2 e 
El3 

+ 28/9($x$*) e 
El3 

+ 4N/3) $1’ 

* 
+ (8/3) (+ F++ F+ + h-c.) 

(29) 

+ (213) e 
E/3 * 

($2 &F + h.c.) 

+ ([8/91+$x + 8)fzj2) ee’3 (c$ 5 F* + h.c.) 

+ 3 e-E’3 (F++l’} 

Setting for illustration e <G' = 1 and for +<<l we have 

vT = 2 [(201fzj2 + 4N/3) + (361fz14 + 8)fzj2 + lo/g) ‘$+* + * - .I $ (30) 

which clearly possesses a minimum at PO. We have thus shown that it is 

possible within the context of supergravity to construct a (zero temperature) 

potential with a shape desired by inflation with a finite temperature minimum 

at r$ = 0. 

Before concluding we wish to comment on two points which were touched on 

+rhe f ermionic contribution to VT must be computed in terms of correctly 
nao,~~~::z,e,"b:e~ipanc:oip~~~ see Ref. 15. This requires an additional renorm- 

expression. 
which has been performed in writing the following 

Because the result depends only on eG and (f,l, the final form is 
valid for $ as well as @. 
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earlier, 1) the Polonyi field and; 2) reheating and the breaking of SU(5). 

The Polonyi field has continually been somewhat of an embarrassment cosmo- 

logially.*3) The problem was that, left alone, the Polonyi field could not 

dissipate energy fast enough to settle into its minimum. Inflation made no 

improvement24), since the position of the vacuum expectation value of the 

Polonyi field was dependent on the position of the inflaton and hence had to 

start rolling again after inflation, giving the original problemz3) back 

again. Moreover, the low mass of the Polonyi field in the minimal super- 

gravity models with F(z) = u2 (z+A), compared to the large Hubble parameter, 

resulted in <z2> - H4/Mz due to quantum fluctuations25) produced during 

inflation26). This ensured that z was far from its minimum, thus thwarting 

any attempt to solve the Polonyi problem by a devious choice of initial 

conditions. 

In the context of minimal supergravity, two possible solutionsz4) have 

been proposed. Both involve a complicated O'Raifeartaigh sector with three 

complex Polonyi-esque fields. Rather than comment on these solutions, we will 

reexamine the situation in the above SU(N,l) model. We observe that by 

judicious choice of the function f(z,z+) in the ghler potential (141, it is 

possible to fix any desired value of the gravitino mass. At the same time, 

the mass of one of the two real Polonyi particles if fixed to be O(m3i2), 

while the other remains zero at tree level and is subsquently determined by 

radiative corrections to be O(m$mp). Clearly the former field presents no 

cosmologial problem (m 
3/2 

>> s here), while the latter does. It would of 

course be possible to avoid this remaining difficulty by fixing a large mass 

for the second Polonyi component. This would indeed solve all cosmological 

problems, but it would not have the feature 14)-l') desirable for particle 

physics of a dynmically determined weak interaction scale. There is an 
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alternative strategyz') based on SU(N,l) which may also solve both dimensions 

of the Polonyi problem while retaining this no-scale feature. This is based 

on models in which the gravitino mass is fixed dynamically by radiative 

corrections to be 0($/$-l where p > 1. In these models both real components 

of the complex Polonyi field have enhanced self-couplings of order 4 CD 

(z/MA)": MA = r&'-l mp 2-p which permit a more rapid dissipation of the Polonyi 

field energy. Determination of the weak interaction scale by radiative cor- 

rections is possible2') in this scenario if MA 2 0(1012)GeV. Although eG is 

not fixed in this scenario, as we had assumed before equation (17), it is 

possible to maintain our assumed form (21) of the inflationary potential by a 

careful rescalingl"'5) of the supoptential in the KH'hler potential (14). 

Finally we turn to the questions of reheating and the breaking of 

SlJ(5). Earlier on we said that the decay of the inflaton could reheat the 

Universe up to TR - ""0. While this is a low value for TR, it may nevertheless 

be possible to generate a large enough baryon-to-photon ratio [see eq. (25)l. 

However, it is easy to conceive of two ways in which this analysis may be 

modified in our favor. One is to note that fluctuations in our more massive 

Polonyi field can contribute to reheating. The energy stored in t, 

oscillations will be - M2 <c2> so that 

Tii - M; <c2> (31) 

Because of the large mass of the Polonyi field, even small <c2> will lead to 

large TR. For example, if we require only that TR L lo4 GeV, so that 

(nB/ny),,, 1 10m6 E for MH - IOlaGeV, we need only <52> > 1O-56 or 

(<52>)'/2 A 1O-2o H. We actually get much larger values of <c2>. Our 

previous expression25 Cc*> - H*/M2 only applied in the limit M << H. In our 

case28 
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<52> - 1O-2 Hz (32) 

and therefore we can get ample reheating. If there is any reheating due to 

CR' it is easy to see that it will involve all matter fields. The cR is 

present in the exponential in equation (15). Thus for all non-trilinear terms 

in F(yi) there will be a direct coupling proportional to c(Fy(2 responsible 

for 5 decay. 

Additionally, we have yet to discuss the connection to N(5) breaking. 

It is actually possible to decouple the scale of the slow roll-over, fixed by 

tip/p to be H - mo2 - 1010 GeV, from the scale present during the end of 

i"flatio".'O) This happens automatically if one couples the inflator, to W(5) 

non-singlets in a non-trivial way. Indeed, rather than impose a complete 

decoupling (7) of the two sectors, it is m"re natural to consider the most 

general linked superpotential of the formlo) 

F(,f,,o) = A($) + B(+) 0' + C(4) a3 + * * * (33) 

where Z is a 24 of SU(5) and 6 = TrZ". - All other observable fields yi can 

for our purposs be taken to lie at their minima yi - 0. A priori, A, B, C, 

etc. are arbitrary analytic functions of r# which represent the (in general 

non-renomalizable) couplings of 4 to 1. Care must be taken to ensure that 

these couplings do not perturb our hard-won satisfaction (30) of the thermal 

constraint. Because of these couplings, the curvature of the potential in the 

E direction changes as @ rolls, and can become negative for some range of r$ 

values, triggeringlo) a second order phase transition which breaks SU(5). 

After the phase transition, the dominant scale of the potential is mz>>H. In 

effect, the inflator, becomes a mixture of r$ and Z, and can give adequate 

reheating through the decays of the Z - oscillations. 
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1" co"cl"sio", we have demonstrated that one can construct a viable model 

for inflation in the context of a non-compact SU(N,l) supergravity models. We 

have show" that it is possible in these models with their "on-minimal kinetic 

terms to arrange a finite temperature minimum at a point where the potential 

IS flat, thus satisfying the thermal constraint. Our inflationary model can 

be combined with complementary strategies 10,27,28) to solve the Polonyi 

problem and provide reheating adequate for baryosynthesis. 
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ERRATUM: 

SlJ(N,l) Inflation 

J. Ellis, K. Enqvist, D.V. Nanopoulos, K.A. Olive and M. Srednicki 

in Phys. Lett. 1529 (1985) 175 

Eq. 27 should read: 

TrM; = 2(~-'); "; 

l/2 TrM; = e'[(G -')y!G-')~ TLk - 23 

$j = Gij + cicj _ ck(c-l);c;j 

Eq. 29 should read: 

VT = T2 F, 5 e C4/3(N+4)e -;“‘3/,o,2 + 3”-2G’31Fmmi2 + 2jF12] 

Eq. 30 should read: 

VT = $ [4/3(N+4) + 2$+* + ..;lm~ 

(27) 

(29) 

!30) 

Ref. 8 should include: 

P. Binetruy and M.K. Gaillard. Berkeley preprint NSF-ITP-85-09 

(1985). 

All conclusions and results of this paper remain unchanged; 


